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FOREKORD

Thic report presents work which was performed under the Joint
Army-Navy Aircraft Instrumentation Research (JANAIR) Program, a
research and exploratory development program directed by tne De-
partment of the MNavy, Office of Naval Research. Special guidance is
provided to che program for the Army Electronics Ccmmand, the Naval
Air Systems Command, and the Office of Mavai Research through an
organization kncwn 2s the CAMAIR Working Group. The Working Group
is currently composed of representatives from the following offices:

Department of the Navy

Office of Naval Research, Aeronautics (Code 461)
Arlington, Virginia 22217

(%ircraft Instrumentation and Contro: Prooram Area}

Department of the Havy

Maval Air Systems Command

Washington, D. C. 20360

{Avionics Division; Navigatisn instrumentation and Display Branch
(NAVAIR 5337)]

[Crew Systems Division; Cockpit/Cabin Requirements and Standards
Branch (NAVAIR 5313)]

Department of the Army

Army Electronics Command, Avionics Laboratory
Fort Mowmout", New Jersgy 07703
[Instrumentation Techrical Area (AMSEL-VL-1)]

The Joint Army-Navy Aircraft Instrumentation Research Program
cbjective is to conduct applizd research using analytical and ex-
perimental investigaticns for identifying, defining, and validating
advanced concepts which may be applied to futurs, improved Navy and
Army aircraft instrumentotion systems. This includes sensing elements,
data processors, displays sontrols,and man/machine interfaces for fixed-
and rotary-wing aircraft for all flight regimes.
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.0 Introdu:ticn

1.1 Purpose and Scope

The projected increase in the utilization <f helicopters as
a weapons delivery and sensor platform neressitatas an increased
awareness of man's performarce capabilities in this dynamic en-
vironment. This environment includes accelzration, vibration,
noise and temperature asprincipal parareters effecting human
performance. Of these, vibration has been found to have the
greatest impact on human performance. While much research
has been devoted to the effects of vibration on human performance,
the complexity of this parameter makes straighttforward projection
to the helicopter environment tenuous at best.

In view of this sitw3%on the JANAIR (Joint Army Navy Air-
craft Instrumentation Re.eavch)Group decided to measure in-
flight vibration at all significant humar interface points for a
cross-section of Ammy and Navy operational helicopters. This vi-
bration was to bz collectad in ail three axes of motion: X-axis
(transverse), Y-axis (lateral),and Z-axis {vertical}. It was further
decided that two data tapes should be recorded for each helicopter,
one a primery mission profile continuousiy recorded from take-off
to touch-down, the other a component tape consisting of discrete
maneuvers representative of a brcad scope of primary and secondary
missions. These tapes wouid serve two main purposes:

(1) Provide much needed data relevant to the heiicopler vi-
bration environment.

{2} 9rovide magretic tape recordincs for use in dynamic sim-
ulation of this environment.

The present study is a first step toward fulfilling these
goals.

Two helicopters were selected for initial investigation;
the CH-47C, the Army's medium transport/aircraft recovery heli-
copter and the SH-3A, the Navy's ASW (Anti-submarine warrare) hel-
icopter. Triaxial vibration levels were recorded on both heli-
copters at the rudder pedai, collective control stick (refersed
to as the thrust lever on the CH-47C), irstrument nanel, pilot's
seat, and pilot's head (vertical axis-only). An additionzl record-
ing was made at the sonar operator’s seat in the SH-3A and the left
side of the instrument panel in the CH-47C. These vibration mea-
svrements were simultaneously recorded on magnetic tape on two sep-
arate flights for 2ach helicopter - a two-hour primary micsion pro-
file from take-off to touch-down and a discrete coumponent flight

i




consisting of those maneuvers representative of 3 broad spectrim
of missions performed by these helicopters. The primary mission
profile chosen for the CH-47C was a helicopte: recovery rission
The SH-3A mission selected was an ASW sonar scarch mission. The
main purpose for the component tape was to provide a means of con-
structing desired mission profiles for future simulation efferts
by selecting reievant maneuvers and splicing them inte a continu-
ous profile tape. This tape.was ysed for the specturm analysis
since it provided superior contro! 67 2ach maneuver segment as
well as a longer time record for each mansuver.

In recerding inflight vitration, major empnasis was o3azed
in the low frequency partion of the spectrum (1-30 Bz)}; as this
reyion contains primary and secondary whole body resconance and
the vast majority of individual organ resonating freyuencies. In
addition, helow 2 iz ths body moves as a simple mass with little
relative internal motion and above 30 Hz any vibratory enrergy
transmitted to the body is absorbed at the point of contact, thus
minimally affecting performance.

1.2 Backgrourd

Resea:ch into the offects of vibration on humen performance
has been voluminous, however, the vast majority of studies have
utilized vertical sinusoidal vibration. Very iittle research has
invelved triaxial random vibratior similar to that found in the
helicopter envircnment. The complexity of this area of research
makes comparisons between studies extremely tenuous. In order
to adequately compare two studies the following parameters must
be specified: frequency, amplitude, direction, and duration of
ine vibration: orientation of the subject, peak as well as rms-g
levels invelved, vioration levels a% all human interface points,
type aad location of all restraints, woveform of the vibration at
its scurce and at the subject, and levels of other environmental
parameters oresent.

While the majority of research is not directly applicable to
thie helicopter epvironmet, it does provide some indication of the
anticipated effects of this environment on the human operator's
performance.

1.2.1 Visual Performance

Grether (1971) pointed out that under vibration the visuai
image is blurred causing a decrement in visual acuity. This cec-
rement also is a function of impairment in maintaining the
accomnodation a2nd fixation essertial for optimal visual acuidy.
In support of this reasening, Mozell and White (1958) found vi-
bration above 8 Hz had a detrimertal effect on th: ability to
read digits or airplane instruments. The frequency vangc having
the greatest effect on visual zcuity was found to be 10-25 Hz
(Lange and Coermann, 1962; G'Briant and Ohibaum, 1970). This




decrement in visual acuity is not however a sinple function of
relative displacement of subject and target. Guignard anc Irving
(1962) diccovered that the response of the pursuit movements made
bv still subjects fixating or oscillating targets was lower than
the frequency respornse of compensatory eye movements f.xating a
static target during vibration of the man. This phencmenron was
found to be frequency dependent by Dennis {1965), who found that
at ¢ Hz, vibration of the visual object resulted in higher impair-
ment nf vision than comparable vibration of the human, however at
14, 19 and 27 Hz the reverse was found to be the case. Lange

and Coeimann{1962) divide the effects of vibration on visual acuity
intc two parts: below 12 Hz this impairment is accounted fo'- by
the physiological stress; above 12 Hz it is due to image dis-
piacement on the retina. Guignard and Irving {196C) found that
scanning performarce was significantly impaired by vibratior in
the 1-9 Hz range. They found the yreatest impairment in scanmag
performance to accur at 3.4 Hz. To further complicate matters
Ohllaum et al.(1971) found that this effect of vibration on
visual acuity was dependent on viewing distance. With g-load
held constant, at .4 ¥, visual impairment increased = irequeacy
decreased, at 1.0 M the relationship was rather flat, while at
4.0 M impairment significantly decreased as frequency decreasced.

1.2.2 Auditory Performaace

Teare (1963) found that auditory threshold increased with vi-
bration in the 1-27 Hz range. In the 2-8 Hz range, Teare found
that subjects spoke in short bursts. Altncugh the threshold
shifts found in this study were not considered tc be of practical
significance, the combination of noise and vibration found in the
helicopter environment may combine to create problems in commun-
ication between operators.

1.2.3 Manual Tracking Performance

As would be expected, vib:ation has been found to have 2
signiTicant effect on human tracking performance. Buckhcut (1964)
found a 34-74% decrement in vertical tracking performance and
a 10-48% decrement in horizontal tracking performince under ver-
tical vibration. The usual finding is that the decrement in track-
ing performance is greatest in that axis aligned with the direction
of dominant vibratiou; however, Shoenberger (1970) found that where-
as this was true for the vertical axis, horizontal vibration had
a greater effect on vertical tracking than did vibration in the
vertical axis. Forbes {1959) attributes the effects of vibration
on iracking performance to shoulder-girdle resonance, degraded
visual acuity o7 the target, as weli as the jolting of the sub-
ject's arm 2nd hand during vibration.




1.2.4 Central Neural Processes

The vast amount of rcsearch has found little effect of vi-
oration on the central neural processes; however, Shoenberger
(1870) found decrements in choice reaction time under vibration
it the 1-11 Hz range. Poorer vigilance verformance under vi-
vration was found by Hornick and Lefritz (1966), end Shoenberger
(1969). Harris and <ommer (1971) found that high intensity noise
end vibration combine te produce a decrement in mental sub-
trettion ability. This effect was greater a2t 5 Hz than at  or
12 +-z. Hutchins (1970) found that vibratior increased the reac-
tion time and false alarm rate of subjects responding to simu-
lated MAD (Magnetic Anomaly Detection) signals. Buckhout (1964)
found ti.¢ low frequency vibration increased the incidence of
procedural errors (hitting wrong switchl.

1.2.5 Fatigue and Discomfort

Wnile this area is more difficult to define precisely, it
has an obvious relationship to human performance and crew morale.
Chaney (1965) reported that jow frequency vibration (1-12 Hz) re-
sulted in subjective reports of itching, flapping of skin, mild
pain, perceived tightness, swallowing difficulty and dizziness.
Beaupeurt et al. (196%) report that in the 1-4 Hz range low
back pain is a fai~ly commcn complaint of subjects. Gaeuman
et al (1962) found increased oxygen consumption attyibutable to
vibration. They attributed this increased oxygen consumption to
voluntary and involuntary muscular guarding in an attempt to dam-
pen the vibration, resulting in an increase in body metabolic ac-
tivity. Over time this increased metabalic activity leads to mus-
cle fatigue. Guignard and Travers (1959) found that when the whole
body or a single Timb was vibreted at low frequencies, bursts of
acticn potentials synchronous with the stimulus were present from
a muscle in that limb. They concluded that low frequency vi-
bration elicits a periodic synchronous stretch reflex from rest-
ing posturail muscles. Hoover and Ashe {1962) found evidence uf
hyperventilation caused by vibration, especially at 6 Hz, due to
the resonance of the abdominal organ mass at this frequency. Gaeu-
man et al, (1962) aisc found a sedative effect at 2 Hz. Guignard
and Travers (1960) reported instarices of disturbances in equilibrium
and difficulty in maintaining normal body posture. This constant
effort to maintain posture under vibration results in an expenditure
of energy and contributes to fatigue. :

1.2.6 Miscellaneous Effects

Vogt, et al, (1358) and Vykukal {1968) measured the mechanical
impedance of the human body under various Jevels of sustained acceleration
and found that the frequency at which the body resonates increases
with increased levels of sustained acceleration. As sustained
acceleration increases, the body stiffens with a resuitant re-
duction in its damping capability. This process resuits in a higher
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energy transmission between the vibration source and the inter-
nal organs and head. Hornick (1962a) fourd that within two
minutes the human leg g~adually loses its ability to isolate
yibration, thus increasing intensities of motion are trans-
mitted to the body. Hornick {1962b) found that vibration caused
a decrement in the subjects' ability to maintain foot-pressure.
Streeter (1970) found a loss in sensitivity in the hand as the
rasult of vibration in the 30-48C Hz area. He af.itributed this
to tha tendency of the body to absorb the vibration energy at
the point of contact at these frequencies; below 3C Hz the energy
is transmitted from the point of contact to the internal orgsns
and head.

1.2.7 Helicopter Environment

Dean et al. (1964) measured the vibration and noise levels
in the CH-46A and found the vibration wave form to be compiex with
discrete superimpesed sinusoidal frequencies. The major peaks
occurred at frequencies corresponding to the rotor head rate
(«xnown as th. 1/rev frequency), the blade rate (known as the n/
rev frequency) and harmonics of the 1/rev frequency. The 1/rev
frequency for the CH-46A was 4 Hz while the n/rev frequency was
27 Hz. Overall rms-g Tevels varied from .195 in hover to .410 in
rapid descent, with the frequency pattern peaking at 1/rev. n/rev
and harmonics thereof throughout the manuvers examined. The main
power was found at the n/rev frequency. In some instances the rms-
g levels recorded at this frequency were found to exceed MIL-H-
8501A. The second most predominant frequency was 1/rev, with the
2/rev freguency also exhibiting peak power. The higher order har-
monics exhibited decreasing power, especially at the pilot's head.
During reiatively low intensity vibration there was considerable
attenuation between the floor and the pilct’s head at the higher
frequencies; the Tower frequencies (1/rev a.d 2/rev rates) ex-
hibited iittle attenuation. During high intensity vibration this
attenuation was not found. Overall cabin noise levels in the CH-
46A varied from 107db at liftoff to 114 db at 130 knot cruise.
Ketchel et al. {1969) in a survey of existing helicopters, re-
port 1/rev frequencies ranging from 3-5 Hz and n/rev freguencies
ranging from 12-25 Hz. This finding of peak freguencies in the
3-5 Hz area is of particular relevance to human performance, since
it is precisely in this range (primary body resonance) where the
greatest decrements in niost aspects of human performance have been
found. This combination of low frequency vibration and high
ambient noise levei. found in helicopters implies an environmen®
highly suspect in terms of its effect on the human operator. As
the scope of the helicopter broadens and man's tasks correspordingly
increase ia scope and complexity, it becomes increasingly clear that
more data relevant to this complex envircrment is urgently needed.

e —— or————




2.0 Prccedures

2.1 Inflight Data Recording System

The inflight data recording system utilized in this study was
a self-contained carry-on system. This system consisted of four
subsystems.

2.1.1 Hewlett Packard 3960 Instrumentation Tape Recorder

This recorder had four multiplex tape tracks, each capable of
recording 13 separate channels of data. The present configuration
utitized tracks 1 and 2 for vibration, track 3 for ISS commentary
and track 4 for cabin noise recording. Thirteen teiemetry voftage
controllied oscillators (IRIG bands 1-13incl.) were used for the
two vibration tracks. This recorder is shown i Figure 1.

2.1.2 Auxillary Battery Packaje

This package contained 50 Eveready CH4T nickel cadmium batter-
iec in a series/parallel arrangement and provided 32 volts over a
four hour recording period. In addition,this package contained
the electronics for the 26 channel multiplex operation. The
battery package is shown in Figure 2.

2.1.3 Accelerometer Packages

These packages c-ntained a combination cf Statham A52 and A6
strain gage acceleroreters orthcgonally arranged to measure the
three axes of vibration. Each package contained all necessary sig-
nal conditioning electronics for the three acceleromeiars and eight
Mallory Durocell RM-32 mercury batteries to power these electrunics.
There were five triaxial packages and one specially configured bite
bar accelerometer for picking up vibration at the pilot's head.
Figures 3 and 4 show the triaxial package and the bite bar
respectively. Figures 5-8 show the acceleromzter package place-
ments in the CH-47C. Figures 9-13 show thase placements for the
SH-3A.

2.1.4 Cabin Noise Measuremcnt System

This system consisted of a one inch B and K condenscr mi-
crophone with a random fmpedance corrector, & preamplifisr fo match
impedance between the microphone and the rest of the cystem, and an
amplifier to provide gain. Th2 fregquency response of the tape record-
er was 50 Hz to 16000 Hz. The microphone was located on the o-erhead
between the cockpit and cabin area on both the CH-47C and SH-3A.
Figure 14 shows the microphone placement in the CH-47C. Figure
15 is a simplified schematic representation of the entire inflight
data recording system.
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Figure 5. Position of Rudder Pedal Accelerometer Package in the CH-47C
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Figure 6.

Fosition of Thrust Lever Accelercmeter Package in the CH-47C
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Figure v.

Position of Rudder Pedal Accelerometer Package in the SH-3A
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2.2 Mission Profiles

2.2.1 SH-3A Mission Profile

The mission chosen as representative of the primary funttion
o7 the SH-3A was an ASW sonar search mission. An elapsed time/maneuver
description of this mission is given in Table 1. Thic mission was
a simulated sonar search in that cold weather conditions prchibited
flights over water, nowever, it is reasonable to assume that the
basic vibration characteristics should be similar to an actual
sonar search mission. The missior duration was two hours and data
collection was continuous throughout this time period. This mission
consists of the helicopter flying to a noint where a submarine 1s
suspected, at this poir. the helicopter descends to 40 ft. and hovers.
During the hover the sonar transducer is lowzred into the water.
The helicopter remains in hover until a submarine is detected or
until it is determined that no submarine is present in the immediate
search area. This process is repeated at other search areas until
the mission is completed. In this study five simnulated sonar searches
were attempted with the pilot adhering to the rigid altitude margin
required of actual sonar dips. Table II gives the elapsed time/maneuver
description of the SH-3A discrete component flight as recorded.

2.2.2 (B-47C Mission Profile

The mission chosen as representative of the primary function
of the CH-47C was a combination helicopter recovery/trocp resupply
mission typical of Vietnam. An elapsed time/maneuver descriptiin of
this mission is given in Table III. The helicopter recovery por-
tion of this mission involved hoisting a 6000 1b UH-1A and carry-
ing it to a designated drop point. At the drop point the UH-1A
was lowered untii the noist cable was compleiely slack. This pro-
cess was repeated four iimes. Figure 16 shows the CH-47C liftina
the UH-1A. The troop resupply portion was merely a repetition - .
the above with no external load. This mission segment was repeated
three times. The duration of the entire mission was two hours. Dur-
ing the recording of this mission profiie the tape recorder made
several inadvertent stops due to a loose connector. These stops
rasulted in momentary spikes on the otherwise continucus tape record.
in as much as this tape was planned as a device for driving a human
simulator, such spikes were unacceptable. To overcome this problem
these spikes were erased and the resulting dead space replaced with
the vibration recorded immediately prior to the occurance of the
spike. The resuiting tape record was free of any spurious spikes
and representative of the mission profile desired. Table IV gives
the elapsed time/maneuver description of the CH-47C discrete compenent
flight ac recorded.
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TABLE 111
CH-47C Helicopter Recovery Mission Flight
Mission Segment Altitude (ft) Air Speed (kts) Elapsed Time (IRIG B)
Hoist UH-1A 20 0 0:00 - 3:55
Climb 6C0 ft/min 60 3:56 - 6:15
Cruise 1500 60 6:15 - 16:30
Dascend 1000 ft/min 50 16:30 -~ 17:10
Release UH-1A 20 0 17:10 - 18:30
Climb 500 ft/min 60 18:3¢ - 19:43
Cruise 1500 &0 26:00 - 29:44
Descend 1000 ft/min 50 29:44 - 31:50
Release UH-1A 20 0 31:50 -~ 32:10
Climb 500 ft/min 60 32:10 - 33:50
Cruise 1500 60 34:00 - 42:40
Descend 1000 ft/min 50 42:40 - 44:20
Release UH 1A 20 0 44:20 -~ 45:10
Ciimb 500 fc¢/min 60 45:20 - 46:50
Cruise 1500 65 46:50 - 54:13
Jescend 1000 ft/min 50 54:13 - 56:10
Release UH-TA* 20 0 56:10 - 57:00
Hover 20 0 57:00 - 65:45
Ciimb 1000 ft/min 80 66:45 - 68:30
Cruise 1500 100 68:30 -~ 78:00
Cescend 1000 ft/min 80 78:00 - 80:00
Climb 1000 ft/min 80 86:00 - 81:40
Cruise 1500 100 81:40 - 92:30
Descend 100C ft/min 80 92:30 - 943:20
Climb 1000 ft, min 80 94:20 - 96:30
Cruise 1200 100 96:30 - 104:20
Descend 1000 ft/min 80 104:20 - 105:40
Climy 1000 80 105:40 - 107:29
Return 1460 100 107:20 - 12:10
*Final Release of UH-1A
26
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2.3 Data Collection‘Procedures

Vibration, cabin noise, and iCS commentary were originally
recorded on 1/4-inch magnetic tape. The multiple vibration pick-
up points were recorded in an FM multiplex format and subsequently
de-multiplexed and re-recorded, together with cabin noise and ICS
commentary, on one-inch, 14-channel magnetic tape. Ir those cases
where more than 14 channels of information were originally recorded,
the additional data were simultanesusly re-recorded on 1/2-inch, 7
channel magnetic tape. The tape format vor the tour data fiights
is shown in Table V.

ach accelervmeter was calibrated immediately before each
data flight and the +1, 0, - 1g reading was recorded on the front of
the 1/4-inch magnetic tape. Table VI shows the status of the data
coliected for each accelerometer for the four flights. In order tc
avoid recording local resonances and distorting the overall vibration
picture associated with the structure of interest, the triaxial
accelerometer packages were aligned directly witn this structure
whenever possible. In the two cuses where this was not possible
(the rudder pedal and collective control stick) a minimum of
bracketry was utilized. In followirj this r1ecommernded procedure
it should be emphasized that the vibration levels recorded at each
point are in reference to a coordirate system collinear with the
structure measured and not the physiological reference system of
the pilot. For convenience of reference, Table VII provides the
angular displacement from the pilot's physiological coordirate
system of all the accelerometer packages.

Sound pressure level measurements were recorded directly
with a B and X sound pressure level meter in order to provide
an amplitude reference for the recorded noise measurements. These
levels are shown in Tables VIII and IX for the CH-47C and the SH-3A
respectively.

2.4 Data Analvsis

A General Radio model 1625 third octave-band multifiiter was
used to perform a spectrum analysis of the vibration tapes. The
third octave-band analysis was over the frequency range of inter-
est (1-30 Hz) and included all vibration pickup points on both
helicopters across four representative maneuvers. For each man-
euver/helicopter/accelerometer combination two independent one-min-
ute time reccrds were analyzed and their resulting anplitude oy fre-
quency plots superimposed on the same spectrogram. This prccedure
was followed in order to check the assumption of stationarity, i.e.
to determine the generailizability cf a given record. The spectroarams
resulting from the third octave-band analysis ars presented in
appendixes A and B for SH-32 and CH-47C respectively. It shourd be
noted that the vibration levels for the vudder pedal and collective
control stick shown in Appendixes A and B repr2sent those leveis re-
corded with the pilot in contact with the control: while in control
of the aircraft. The vibration recorded at the collective control

28



TABLE V

Magnetic Tape Format

One Inch 14 Channel Tapes

Channel CH-47C Mission Ch-47C Component | SH-3A Mission SE-3A Component

1 Rudder X Tarust Lever X Inst. Panel X Rudder X

2 Rudder ¥ Thrust Lever Y Inst. Panel Y Rudder Y

3 Rudder Z Thrust Lever 1 Inst. Panel Z Rudder Z

4 Thrust Lever X} Iast. Panel X Front Seat X Collectiv= X
5 Thrust Lever Y| Inst. Panel Y Front Seat ¥ Collective 7
6 Thrust Lever Z] Inst. Panel Z Front Seat 7 Collective Z
7 inst. Panel X Front Seat X Sonar Op.Seat X | Inst. Pane! X
8 Inst. Panel Y Front Seat Y Sonar Op.Seat Y| Inst. Panel Y
9 inst. Panel Z Front Seat Z Sonar Op.Seat 2| Inst. Panel Z
10 Front Seat X Bite Bar * Front Seat X
N ront Seat Y * * Front Seat Y
12 tront Seat Z Cabin Noise Cabin Noise Front Seat 7
13 i<s ics 1CS Bite Bar
14 IRIG Time Codej IRIG Time Code IRIG Time Code | IRIG Time Code

Gne Hal¥ Inch 7 Channel Auxiliarv Tapes
1 Bite Bar * * Rear Seat X
2 Inst Panel * * Rear Seat Y
{left) X
3 Inst Panel * * *
(left) .

4 Ca%in Noise * * £abin Noise

5 ICS * * *

b iRIG Time Code] * * *

7 * * *

IRIG Time CoCeA_!

*No information on This Channel

29
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stick ard rudder pedal free of pilot contact is shkown in appenuix C
for the SH-3A.

Before analysis of a given channel, a sine wave calibration
equivalent to the d.c. level obtained in the prefiight calibration
for that accelerometer was generated. By this procedure all channels
of data were standardized such that the voltage associated with 1.0g
acceleration represented a 50 db reading on the multifilter, 1.e.,

all resulting spectrograms are directly comparable.
3.0 Results and Discussion

At the compietion of the thrid octave-band anziysis a General
Radio model 1925-90G0 tenth octave-btand multifilter was used to pin-
point more closely the exact frequencies associated with peak accel-
sration. Three predominant freguencies were found for both helicop-
ters: 3.9 Hz {1/rev), 12.0 Hz (3/rev), and 24.0 Hz {(n/rev) vor the
CH-47C and 3.4 Hz (1/rev), 6.8 Hz {2/rev), and 17.0 Hz {n/rev) for
the SH-3A. Tables X and XI represent the rms-g levels found at
these three frequencies for the CH-47¢ and SH-3A respectively. Table
XII represents a comparison of the rms-g levels asscciated with the
three peak frequencies recorded in the SH-3A at the rudder pedal and
collective control stick with pilot in normal contact with that cen-
trol versus those levels found when the particular control was free.

The results of the spectrum analysis of the vibration fapes
indicate that in the area of concern {1-30 K:), vibration in both
helicopters is a complex wave form exhibiting predominant power
at three discrete frequencies. These frequencies correspond to
the main rotor head ~ate (1/rev), a harmonic of this frequency {2/
rev for the SH-3A and 3/rev for the CH-47C) and the blade rate (n/
rev). This pattern is evident across all axes although most pre-
dominant in the vertical {Z) axis.

From a physiological standpoint the peak at the 1/rev rate is
of particular importace since this rate falls at the lower end of
the frequency range comprising whole body resonance (3-7 Hz}). In
this rarye the body acts as an amplifier of vibration amplitude as
it travels from the source through the body te the head. This
phenomenon is plainly seen in Table X and XI when the mms-g levels
for pilot's seat (Z-axis) are compared against the bite bar (pilot's
head in the Z axis). At the 1/rev frequency the vibratior amplitude
is considerably greater at the pilot’s head than at the seat,at
the middle frequency the amplitude is almest unaffected as it is
transmitted from the pilot's seat to his head; while at the n/rev
frequency the amplitude at the pilot's head is only a fraction of the
seat smplitude. These results imply that while the vibration record-
ed at the various pickup points at the 1/rev frequency is usually
considerably less than at the n/rev frequency, the impact on pilot
performance {where the pilot is in direct contact with the vibrating
structure) is mest likely greatest from the 1/rev component. It is
therefore at this rate that major emphasis in vibration attenuation
chould be placed tc have 2n optimum impact on pilot performance.
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The large rms-g levels recorded in the Z-axis of the instru-
ment panel for the CH-47C at the n/rev frequency suggest a potential
problem area: As previously mentioned the body attenuated the
majority of vibration amplitude at the n/rev frequency, thus there
is a motion phase lag between the pilot's head and the instrument -
panel. It would seem that for the instrument panel (and any other
structure for which the nilet has no direct ¢2ontact but from which
he must extract information) the n/rev frequency is of critical
concern. For such structures vibration attenuation and absorption
emphasis should be placed at the n/rev frequency. This situation
is of sarticular importance in light of the previously mentioned
differential effact of performance between a vibrating target with the
man static and a vibrating man viewing a static target. It is not
clear what effect this out-of-phase rondition has on human perfor-
mance, but it may create special problems of its own which need further
investigation.

A cioser examination of Table XII reveals that the effects on
vibration amplitude of pilot ccntact with a control are dependent
on frequency. At 3.4 Hz (1/rev) contact with the control resuited in
a slight attenuation in the recorded rms-g level at that control, at
©.8 Hz there is actually an intensification in vibration amplitude,
while at 17 Hz a rather large attenuation is apparent. These results
are in line with the fact that 6.8 Hz is within the range of the
resonance frequency of both the ara and the leg. It is therefore
apparent that with respect to rudder pedal and control stick vibra-
tion, major emphasis should be placed at this intermediate fre-
quency.

4.0 Application of the Data

The final poirt of concern is the representativeness of the
obtained vibration data. It is obvious that a multitude of factors
contribute to the exact vibration wave Torm found at any given time
within a given heliccpter. From a practical standpoint however
the purely random components of helicopter vibration represent a
rather insignificant portion of the total compcsite. This 1s ev-
idencesd by the corresponderce between the two independent one-min-
uyte tirve records. These twe records exhibited corresponding am-
p.itude-frequency patterns for both helicopters across all maneuvers
investigated. This fact coupled with the predictability of the
three peak frequencies found, indicate that these data are generaliz-
able to the vibration spectra found in SH-3A and CH-47¢ helicopters
and should be useful in sinulating these environments.

While it is theoretically possible to utilize all the recorded
vibration data tc individually drive each structure in a simulator,
such an approach would be prohibitively expensive and would not be
the most efficient approach in terms of information gained relevant
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to human perfurmance. Based on the fact that the human operator
has primary contact with the seat, this interface should be driven
directly with the vibration recordings on the magnetic tape. The
obviois importance of the instrument panel as a scurce of infor-
mation suggests that this structure be independently driven. Of
major concern is the simulation of the seat and instrument panel
such as to produce the unique out-of-phase condition fourd in the
helicopter envircnment. It is rather doubtful that this situation
could be adequately attained by whole cockpit vibration. The data
relevant to the pilot's head, rudder pedal and collective control
stick could be used indirectiy to verify the simulator‘s response.
Various damping and spring load2d devices could be utilized to
accomplish a realistic vibration pattern for these control:s with-
out direct utilization »f the data tapes.

Utilization of the cabin noise data would be somewhat dep-ndent
on the sound characteristics of the simulator. The investigateo~'s
major decision is whether to present the noise to the subjects via
external speakers or earphones. While external sp=akers proviage for
a higher fidelity of simulation, this method is usualily considerably
more expensive. Research resuits relevant to this gquestion are in con-
flict. Bromberger and Orrick (1972), using a simulated MAD task, found
no difference in performance attributable to method of presentation;
Sommer and Harris (i970), using a whole-body balancing task found
poorer performance with speakers than earphones. It appears that
the decision to use external speakers or earphones depends on the
task involved as well as the physical characteristics of tl.e simula-
tion facility. Bromberger and Orrick (1272) alsc found ne difference
in performance between white noise and helicopter (HH-2D) noise
matched for overall amplitude. This suggests that precise spectral
matching across maneuvers is unnecessary. The extent to which it is
necessary to achieve a correspondence between maneuver ard overall
noise amplitude is not clear; however, the above evidenc: suggests
that precise correspondence would probably not be warranted.

5.0 Summary

As anticipated the peak frequencies found for both helicopters
were the resuit of rotor head rate and harmonics ¢f this frequency
{especially the n/rev frequency). Each of the three peak frequencies
was found to have particular relevarce to human performance. The 1/
rev frequency, being in the whole-body resonance range, was particular-
ly significant due to the energy at this frequency being transmitted
to the pilot's head. The 2/rev frequency (for the SH-3A) was the
critical frequancy at the rudder pedal and collective control stick
since it is in the range of resonance for both the arm and leg. The
n/rev frequency was the critical frequency at the instrument panel due
to both the motion phase lag between the pilot's head and the dis-
plays and the low frequency response of the eve to a vibrating tar-
get.
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Sha o wees

The correspordence ir both frequency and amplitude of vibration
found between the :wo independent time samples for both helicopters
across all maneuvers together with the high degree of predictability
of peak frequencies (1/rev and harmonics thereof) supported the
contention that the random component of this vibration was relatively
insigificant and thus gave support for the utilization of these
tapes to simulate the vibration environment of these helicopters.

It was suggested that the most valuable human performance data would
be attained if the pilot's seat and instrument panel tapes were used
to directly vibrate these structures in a simulator, whila the re-
maining data would provide validation of simulation fidelity for the
total simulation package.
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APPENDIX A
Third COctave-Band Spectrcgrams for the SH-3A Helicopter

e el e RN WO S B

ARAEPRENG PEMPT I [, S SB I, ST




¥ riv i Rits Sha N
wbes - HIJ..O.TA
» N B -
11T 7
o 0 ?

)

......

=

i
i
B

Dend

&»

4o,

525

0

'L.oo

Oy

W
s28

Gt

il

2540

234043

u

ol

1.00

01 X

%

i 1100

2s

i+ W o W 2 el o L+ e e e e 30 -
w R o S N O o Bt et O Ay Mm
: 1< T i 1 e : ol e ;&nmu
i . 24 43 i i T = = o xﬂmm
-

i

o
ois 238

Froquency in M2

. £ Nss

P = Y 00 1 I = R O S ! e =139

e » 2 83 3§ °© 8 » 2 8 8 ° 8 & 2 3 °
| - —d T4 M .;9 - off st O Bt oy Dot : -~ of
i iy . A rz= ko B e 08 s g == = S0t 1o
] ¢ . - 500 e P Sieiet WU o i o oo . = O e
e e < 1~ i o x._ﬁ,.. = Ew Je
-~ ,mn.nﬂhu;u = i 3 Fdaal 49
: =319 ) b e e = g
PR e e S el o 1 = 1
Mww# e Rl o -, 20 - S O B I i
-d 4 T I M_ 39 N (U Tt S O 39 B - n..“_m

Thied-Octave-Bend Conter

[«] [,
- o
G.x«.vc.

196377 9 SWY

.31

e 7
(SXY-A)

124977 9 m!m

0

T(siev-2)
_281_ 9 SWY

MANEUVER

20 KNOT CRUISE

DOUBLE STANDARD
RATE TURN

100 KNOT CRUISE

HOVER

Pilot's Seat SH-3A

A-1




[ oo of . :
e S o e SN B et b e
jis o o 0 =5 3 g e St e IR
mwut 14 - 5 e e B = e B R mm
£ - 42 - i £ = mm
e W s 4718 = g1 - 1338%
= : -HJ = - xm!..uﬂ 39 NM
SR e e IR 3 F
™ " - , - »
s —— gnr x ] Q ol c&._ﬂ W
S » 2 83 3 ° 8 » 2 3 53 © 8§ » 2 38 &5 °
Fw TR gt e T - J Je
u ] .....mﬂ.m...:v. il |.%r J.a m
- R T o L e w5 CE i o vt i 3
- o A O I (- R =1} 1nmu
. I : Tin §°
i b = m.l....w e Iy hﬁ -t - ——e ] . m
En S8t B H
ukw Jei ° 3 c..'u ; - ..zawm
- e s ll.uu — 17 ] - |i11“ ] - .2 xjvu w
e i e P o i = e
e » 2 3 53 °© 8 » 2 8 53 ° 8§ & 2 8 &5 °
e e e g .l i g L i B Bt !
- ST e T i 0 T 5 B S e 8
i s ot v s 4 e e o 0 o o ,mzuw S i i T R <
B .u.% b B i ..L.W il i " ,;m S ¥
4-41- |-+ - PR o 1 S R 3 - R > “
- N O a2 e R O o e 3 A5 2 4
e 000t Fi00 il AT S (. T S S 0 It ! o s A
N gt = e = S o v ] e e ot 123
1 23 . B 0 Y. ) N s - | - 39 E

B LT FEEL LT TR
o e I R R O S E: e 1 b

SR ot B AR e = R -1 ﬂl IR I e o e 1 B
T et oAe e i s S S5 (R B C- St s o A hy

B e ﬂ-..w i nm t_w _.w m el g ,,Ll..n.

IR AR s L sEHE LrELE

s
4

.03

.01l

o

J0H

0

Frequency in Hz

Thie - Octave-Bend Canter

101625406310 16. 28

1.0y

= ° 3

" {SIXV-X)
194371 9 SWY

kel

0

1.00

L
m» = o

) )

.01

{$1XV - A)
12437 9 SKAY

o

1L0O

B (S1XV-2)
130371 © SWY

o :

MANEUVER

100 KNOT CRUISE DOUBLE STANDARD
RATE TURN

20 KNOT CRUISE

HOVER

Instrument Panel SH-3A

A2

m




1.00

.00

. i 11.. e L . e
. . 14 .
i foos inis soss st SO (NN 800N 0
o i 1 o
= A - =11 J3g 1
11 [ o ] :
3 ; . s 001
Il Q G 521 - el
: 153 - 1
) = 5 M1 e N
RN I .. 3 I o T 4 «.;
_ ,3_: @m.w =i 3 3 249 3
& & 2 3 3 e » 2 38 & ° ]
—— W FCI T bt = l e g
« fost ﬂl!_.l.& : 3
] ~He et _ 1 M 5
I B 4 o B
=1 . “iofers
- = h 1 it o
-4Q - T
- - u 3 A ! 1
. * =T '~ : !
i v g B — n,_ 11 b
i " 13 i g,
: L v 1Y i ;
n~ 2 38 & ° °

194971 9 SKWY

SIXY-A)

[9AD

9 SWY

. Vo - i
v Ard g :
T - § ‘JN s T 154
3 : 9] IR . R
) R g T ..ﬂ 5 - .M:U T ;
i - : Hi 41351 I R HEE) I HN
m 1 - r M 11 = M) : T NTH A1 4T, 1
: - - T S ORI N Y T 4 T
, %) IOE1 105 0 IO . LR T T et &
Y o w . SO%1 FOURE JURTE 00NN SN BTV “ i RN ild ddi H i
} sogl EM R 1 Y0 KRR K430 YR ORI T, 1. TH V8! I i i 4081 L1 8 v
o e owes o o S M7 LY RS OETR W04 3 i 31 It g ] iLpt]
i Emm e g e
31 S =N : 91 131 M1 I 115 M T ARY INT: iRt
M 3a ! 36 ) S OO0 Y. 1 B4 £ 5 W0 WERL RIAL L0 N 100 P oot
o - o - = 4 > = = — — L ,o VIt yerss
m 2 o - - -
o > & 3§ e » 2 8 3§ g & ¢ 3
k OO TONDY SUUR UUNOE SN . ; . FT EOPO BT DTt (060t MO JW0) 1RSSO
i g o e e =i s Q1 !t W1 s e
- .- — el I . o
- o T : : 9! s 1% Ll
1 _ - t i ] =
= B 0 =0 i - o » ] = " -
4 ¢ ] I " -1 T . i il m delivdes
= 1 5! ™ . 4 30081 KOO 1
EEEEEEEE= et S e R
i S = O _ ; _ TR ATH Mt .
oo 4ol FN H _; e B Al *u H H _,_ 1 b ! 1
- -t “TEEe o 5 mf oo frreitiestetdafi i LT
J.m 4. $ [ g i 1 . H 8 13081 Y
o s © ® - 0o o - ©0 ®m - o © -
e = 2 38 3 & » 2 B8 & n 2 °
(SIX¥-x) = —Q.!

MANEUVER

20 KNOT CRUISE

DOUBLE STANDARD .
RATE TURN

100 KNOT CRUISE

HOVER

Collective Control Stick SH-3A

A-3




A e e .Tm;&mﬁ« R By o i Hh,»,mw L }

EE SEET EEEET o
s o & = y " SEE wm
- ~ ~ 33 MF

‘01"

M=t~

.J-s].a»f*d

chl

ol

.3

Ee])

11,00

10

31K
.03
01

1.00g

.MT[
JO-

O3h-
01

¥

G e ], D R Bl o e R L _ g
e s o e S 2 . [ Mm
I g s e e B
= a1 13 =1 I " .

M S O s & 2 = U}
- b f M : =11«
- i 33 5! THIN 8 8

b
=]

.00

.StH
10

otk

1
S oeadl
Sl

0
|.oo.{

8

3LE
of
1

u,
°%

100

-3i

S

+
Y

i

ol

ey

10
- .osiﬁ. S hE

e

AR

atii]
it

1
2540

101523540 €310. 18 25

100

.31
10

i

'y

LERRTS i
1
|

!
S

'

°%

1
i

i

[

190!

=3

o

T SIXY-X)

[
O

194071 9 SWY

oli

516250830 16 25

10

ol:

(SIXV-A)
194971 9 SWN

(SIXV-2)

- J odll . s . - doldlld
B et ot DO .,.~ TN . t¢ =
B g e == 0 I o i o2 = e L
1] S O e P e £ e P e g s
B U 000 000 S A1 IO B O AN O It ool
e e e e 8 .n% B - Jﬁw M
—n— e e . X(!s. 1 4]
s i o o B iz (L1
S G g i i o 1 e AR Bl o Y=s .
B8 0 (8 oy s ot 0 4 e - N /0 e g P
s » 2 3 8 ° 8§ ~» 2 3 § °

13497 ©) QWM

DOUBLE STANDARD
RATE TURN

MANEUVER

ICO KNOT CRUISE

20 KNOT CRUISE

HOVER

SH-3A

Rudder Pedal

s

A-4




YE-HS PEIH S5,30( L4

NENL 317y
J2vaNvLS 378Nn03a 3SINYD 1ONX 00! 3SINYD LONM 02 Y3IACH

H3ANINVIN

TN w1 Adusnbesy 4 ui Aauenbe.y zH v Aouenbasy _ IH v Aoyenbesy
1RUI) PUOG.IA0120-PiIYy RUB) PUOG-2A0§20 P4 L JAUI) PUO-9ADIIO-PIYL NS PUOE-IA01I0-PNY L
S2 91 0IEI0OPS 2 91 Gl T2 VIEIOPSZ 9101
L [ SR B _ ' ; : 1]

..Iﬂﬁl«.**u<

o

30 H . -
..... _ _ IR N NN EEREAEE Pyt
kT B AN AT R g D
IR TR PV 1 1 IR NN N ot T i L YRR R W
- {10 S 10" 14—t o1 10 <
Y T M T ST 1 SRS PUN TS e SHEE P S S
o el Elﬁu?& S I i el ~W
. m— e - i P oo 125 v hee I SEY RS Py kel
I Stsic: PO DA R e B s POV e D s i B i PUW i’
T TR0 T Te0 R 1€0 »G)
e : ‘ ; R DS EREEEEE “_ mqlq
- —— RS S SRS Y
L RESREREREREEEEE i il o
e . " I - . : et . - .
0! BT Ll T 10l 01 M
L, R EEEEEEEEE R ; . —
T L [N
: N A A A !
R . . . N o i 'R . " .
T 41 T o gle 1€ i
L _ N A i
. ! o DN LR S 4 IR —
L T T :
} . R P Pl B Piidies
SO0 i T 00T T e it . 1001

A-5




R WP NS Ut £ AT Goprncbs &

LT

~ - e -

APPENDIX B
Third Octave-Band Spectrograms for the CH-47C Helicopter
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APPENDIX €
Third Octave-Band Spectrograms for Coilective and Rudder Pedal
{SH-34} Free of Pilot Contact.
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